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A B S T R A C T

Neutral M and radical-ion [M]⋅– and [M]⋅+ states of phenanthro- (1, 2)/dibenzoquinoxalino- (3, 4) fused 1,2,5- 
chalcogenadiazoles are studied; chalcogen = S (1, 3), Se (2, 4). Experimentally, 1–4 are characterized by 
simultaneous thermogravimetry – differential scanning calorimetry, spectroelectrochemistry and optical 
(UV–Vis–NIR/FL) spectroscopy, 2–4 by cyclic voltammetry (CV) for reduction and oxidation, and [M]⋅– by 
electron paramagnetic resonance ([M]⋅+ were not detected). Compounds 3, 4 and [M]⋅– (in the form of [K(18- 
crown-6)]+ salts; M = 1, 3) are characterized by X-ray diffraction (all are planar), and [M]⋅– (M = 1–4) by 
UV–Vis–NIR. Theoretically, M and [M]⋅– (M = 1–4) are specified by density functional theory (DFT) calculations. 
As compared with the archetypal 2,1,3-benzothiadiazole (5), in 1–4 the π-extension and replacement of S by Se 
jointly lead to increase of DFT adiabatic electron affinity (0.8 → 2.1 eV), decrease of the absolute values of CV 
potentials (− 1.5 → − 0.5 V), broadening and bathochromic shifts of UV–Vis (~310 → ~420 nm) and FL (~380 → 
~470 nm) bands. DFT adiabatic ionization energy of 1–4 of ~7.9 eV is invariant to their structure (5: 8.7 eV). FL 
spectra of 1–4 exhibit small Stokes shifts; and those of 2 and 3, vibronic structures. The estimated excited-state 
lifetime τ1 is ~1 ns (ns) for 3 and 4, and ~2 ns for 2, while long-time component τ2 is ~9 ns for 2 and ~7 ns for 
3. The findings suggest that 1–4 are promising organic π-dyes/non-fullerene electron acceptors for small- 
molecule optoelectronics.

1. Introduction

Tailor-made organic π-dyes exhibiting strong absorption and emis-
sion across ultraviolet–visible–near-infrared (UV–Vis–NIR) area are 
highly demanded by optoelectronics. Crystalline self-assembled small- 
molecule polycyclic (hetero) aromatics are increasingly promising due 
to efficient charge delocalization and transport in combination with 
high absorption and emission of light [1–3] (relevant literature is too 

abundant to be cites completely; here and below only selected references 
are given). Amongst numerous π-scaffolds involved in the field, espe-
cially exciting are fused 1,2,5-chalcogenadiazoles, e. g. benzo- (Scheme 
1; E = S, Se, Te) and azabenzo-derivatives, which can be variously, and 
practically infinitely, functionalized including introduction of chirality, 
for specific fundamentals and/or applications [4–33]. These substances 
exhibit a unique combination of tunable physical and chemical prop-
erties encompassing:
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High thermal stability associated with their heteroaromaticity [34,
35]; Structural diversity/capacity for π-extension spreading from the 
archetypes to variously fused polycyclics [11,28–33,36–43]; Lewis 
ambiphilicity [44] embracing self-assembly via tunable chalcogen 
bonding (ChB) [45,46] and some other secondary bonding interactions 
(SBIs) [47–60]; Positive first adiabatic electron affinity (aEA1) mani-
festing in low-potential-electrochemical and chemical reduction into 
thermodynamically-attractive radical anions (RAs) [5,6,12,61–66] (and 
fused 1,2,5-thia/selenadiazoles belong to the most-efficient non--
fullerene electron acceptors used in organic optoelectronics [67–71]); 
Single-component chromophoric/fluorophoric performance including 
nonlinear, chiroptical and aggregation-induced, as well as electrolumi-
nescence [12–14,16,17,19–22,72–89].

The discussed properties strongly depend on the nature/polariz-
ability of chalcogen atoms, π-extension and substitution pattern and, 
therefore, can be tuned [4,7,28,29,36,61,63,70,73,74,88–93]. The best 
studied are S derivatives; Se and Te ones attract steadily growing 
attention [8,9,43,60,61,94,95] motivated in part by stronger spin-orbit 
coupling (SOC) [96,97] inherent in heavier chalcogen atoms and 
promising for organic optoelectronics [98]. Alongside, fused 1,2,5-chal-
cogenadiazoles are involved in crystal engineering [38,39,42,47,
99–102], electrocatalysis [103], chemosensorics [14,46,104,105], and 
bioimaging [30,31,73,74,76]; and their RAs (chalcogen = S) are sug-
gested for energy storage with FL-enabled self-reporting nonaqueous 
redox flow batteries where they are charge carriers [7,106–108].

The π-extension via annulation is an effective tool to increase aEA1 

Scheme 1. 6π-Electron 1,2,5-chalcogenadiazoles and their 10π-electron benzo-fused derivatives, i.e., 2,1,3-benzochalcogenadiazoles, together with atom number-
ings; E = S, Se and Te. Compounds are represented by the resonance superposition of quinoid and benzoid forms, whose ratio depends on the nature of the E atoms 
[35]; throughout the article, only the benzoid form is used to avoid the superpositions.

Scheme 2. Compounds 1–9; E = S (1, 3, 5, 7), Se (2, 4, 6, 8, 9).

Fig. 1. XRD molecular structures and fragments of crystal structure of 3 (CCDC 2338054) and 4 (CCDC 2338055) exhibiting shortened intermolecular π-contacts, 
and 4 also [Se⋯N]2 supramolecular synthon/ChB (dotted lines). Color code: C grey, H light grey, N blue, S (3)/Se (4) orange. For 1 [12] and 2 [39], see CCDC 
783888 and 2034286, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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and decrease π-excitation energies. An annulation mode is important as 
evidenced by polycyclic aromatic hydrocarbons where transition from 
naphthalene to isomeric linear anthracene and angular phenanthrene 
changes aEA1 differently [109,110]. For further work with exceptionally 
wide variety of 1,2,5-chalcogenadiazoles’ structures and properties, 
especially promising are less-studied highly-annulated/π-extended, but 
still small-molecule, derivatives such as 1–4 [12,38,111] (Scheme 2) 
combining both linear and angular annulation. Of them, 1 [112,113] 
and 4 [114] are already involved in materials science. At the molecular 
level, however, stereoelectronic properties of 1–4 and, especially, their 
single-electron reduced/oxidized states, i.e., radical ions [M]⋅– and 
[M]⋅+ (M = 1–4), are not comprehensively characterized, with partial 
exceptions for 1 [12] and 2 [39]. Here we report on the thermal, 
structural, optical and redox properties of 1–4 and their radical ions. 
Compounds 1–4 are characterized by TG-DSC, CV and SEC; 3 and 4, by 
XRD; and [M]⋅– (M = 1–4), by EPR and UV–Vis–NIR ([M]⋅+ are not 
observed). Theoretically, M and [M]⋅– (M = 1–4) are specified by DFT 

Table 1 
(U)B3LYP/def2-tzvp-calculated aEA1 and aIE1 of compounds 1–8, together with 
negatives of the frontier MOs energies and ΔE of 1–4 (eV).a

Compound 1 2 3 4 5 6 7 8

aEA1
b 0.82 1.00 2.02 2.13 0.82 1.02 2.11 1.90

aIE1 7.97 7.89 7.98 7.92 8.74 8.53 8.62 7.90

a aEA1 and aIE1 are taken as the energy difference of fully optimized neutral 
and corresponding radical-ion states. For 1–4, negatives of one-electron energies 
of the frontier MOs (HOMO/LUMO) and their energy gap (ΔE) are (eV): 1: 5.68/ 
2.94 (2.74); 2: 5.61/3.06 (2.55); 3: 6.59/3.67 (2.92); 4: 6.56/3.74 (2.82).

b For comparison, measured EA1 is 2.67 eV for C60 fullerene [132], 5.50–5.87 
eV for trimethylenecyclopropanes bearing electron-accepting groups, and 5.24 
eV for tetrafluorinated 7,7,8,8-tetracyanoquinodimethane [133]; for some 
relevant fused 1,2,5-chalcogenadiazoles, see Ref. [63].

Fig. 2. Thermal stability of 1–4 in inert (He) and oxidizing (He/O2, %: 80/20) atmospheres. Color code: TG black, DSC green. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.)
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and TD-DFT calculations. As reference compounds, S/Se derivatives 5–9 
(Scheme 2) are used; Te analogs are not involved due to low solubility in 
common organic solvents caused by strong Te⋯N SBIs/ChB [49–51,57,
115,116]. RA salts are prepared by chemical reduction of 1–4, 8, 9; and 
[K(18-crown-6)]+[M]⋅– (M = 1, 3, 8) are characterized by XRD and 
UV–Vis–NIR to support SEC/EPR observations.

Critical parameter of optoelectronic materials is the energy gap ΔE 
between the highest occupied and the lowest unoccupied electronic 
levels. It can be evaluated experimentally and theoretically. Different 
approaches lead to conceptually different energy gaps, which should be 
clearly distinguished [117]. In this work, a combination of experimental 
electrochemical and optical data was used.

2. Experimental

2.1. General

Compounds 1 [12], 2 [39], 3 [111], 4, 8, 9 [38], and KC8 [118] were 
prepared by known methods; cyclic polyether 18-crown-6 was received 
from Aldrich. Solvents were dried by common drying agents. Syntheses 
of RA salts were carried out in the argon glovebox and/or with Schlenk 
technique. Elemental analyses for C, H, and N were carried out with 
CHNS-Analyzer Euro EA 3000.

2.2. Synthesis

[K(18-crown-6)] [1]⋅–. A mixture of 0.003 g (0.08 mmol) of 
elemental potassium, 0.022 g (0.08 mmol) of 18-crown-6 and 0.020 
g (0.08 mmol) of 1 in 3 ml of thf was stirred overnight, and then 
slowly evaporated. Salt [K(18-crown-6)][1]⋅– was obtained in the 
form of brown crystals suitable for XRD.

Table 2 
Photophysical properties of compounds 1–6 in MeCN.

Compound Wavelength, nm Lifetimes τ1/ 
τ2, ns

absorption λmax/λon
a measured 

(log ε)/TD-DFT calculated
emission λmax/ 
excitation λex

b

1 344/355 (4.2), shoulder 
360–480/390

403/310 –

2 366/374 (4.2)/398 426/346 1.8/9.0
3 399/447 (4.4), shoulder 

410–420/402
413, 436/310 1.3/7.0

4c,d 413/457 (4.5), shoulder 
425–430/428

465/405 1.4/–

5 308 (3.9)/– 383/309 –
6 332 (4.2)/– 400/356 –

a λmax and λon are the maximum and red-side onset of the longest-wavelength 
absorption band, respectively.

b Excitation wavelengths.
c For ~30-nm thin-film absorption and emission spectra, see Ref. [114].
d For ~30-nm thin-film, poorly resolved structure of emission band is 

observed; τ1 < 0.6 ns and τ2 > 1.5 ns [114].

Fig. 3. Absorption (red) and emission (blue) spectra of 1–6 in MeCN, together with positions and relative intensities of electronic transitions in the absorption spectra 
(black bars) calculated by TD-DFT at the BLYP/def2-tzvp level of theory for 1 and 2, and the B3LYP/def2-tzvp level for 3 and 4. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the Web version of this article.)
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[K(18-crown-6)] [3]⋅–. A mixture of 0.008 g (0.05 mmol) of po-
tassium thiophenolate, 0.014 g (0.05 mmol) of 18-crown-6 and 
0.015 g (0.05 mmol) of 3 in 3 ml of MeCN was stirred overnight, and 
then slowly evaporated. Salt [K(18-crown-6)][3]⋅– was obtained in 
the form of brown crystals suitable for XRD.
[K(18-crown-6)] [8]•–. A mixture of 0.020 g (0.15 mmol) of KC8, 
0.039 g (0.15 mmol) of 18-crown-6 and 0.050 g (0.15 mmol) of 8 in 
10 ml of thf was stirred overnight. Reaction mixture was filtered, and 
the filtrate was mixed with 10 ml of pentane, stirred for 15 min, and 
the precipitate was filtered off and dried under vacuum. Salt [K 
(18-crown-6)][8]⋅– was obtained in the form of black powder (0.057 
g, 60 %). Elemental analysis, %, found/calculated for 
C28H34КN4O6Se: C 52.02/C 52.43, H 4.89/5.35, N 8.83/8.75. Single 

crystals, suitable for XRD were obtained via slow evaporation of 
toluene solution.

2.3. X-ray diffraction

The X-ray diffraction (XRD) experiments (ESI) were performed with 
a Bruker Kappa Apex II CCD diffractometer by using a graphite- 
monochromated MoKα irradiation. The structures were solved by the 
direct method using the SHELX-97 program [119] and refined by 
full-matrix least-squares method against all F2 in anisotropic approxi-
mation using the OLEX2 program [120]. The H atoms positions were 
calculated with the riding model. Absorption corrections were applied 
using the empirical multiscan method with the SADABS programs [121]. 
The obtained crystal structures were analyzed for shortened contacts 

Fig. 4. CVs of compounds in MeCN at various potential sweep rates indicated by colour: (a) 1, (b) 2, (c) 3, (d) 4, (e) 8 (the first wave), and (f) 8 (full sweep). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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between non-bonded atoms using the Mercury program [122]. CCDC 
2338054 (3), 2338055 (4), 2338056 ([K(18-crown-6)]+[1]⋅–), 2338057 
([K(18-crown-6)]+[3]⋅–), and 2338058 ([K(18-crown-6)]+[8]⋅–) contain 
the supplementary crystallographic data for this paper. The data can be 
obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by 
emailing data_request@ccdc.cam.ac.uk, or by contacting The Cam-
bridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 
1EZ, UK; fax: +44 1223 336033.

2.4. Simultaneous thermogravimetry – differential scanning calorimetry

The simultaneous thermogravimetry – differential scanning calo-
rimetry (TG-DSC) measurements were performed in inert (He) and 
oxidizing (He/O2, %: 80/20) atmospheres with a Netzsch STA 409 in-
strument equipped with platinum pan at a heating rate of 10 ◦C min− 1. 
Temperature and heat flow calibration was performed according to ISO 
11357-1 standard by the temperatures and enthalpies of phase transi-
tions of standard substances from the Netzsch calibration set 
(C6H5COOH (99.5 %), RbNO3 (99.99 %), In (99.99 %), Sn (99.99 %), Bi 
(99.9995 %) and Zn (99.999 %). The obtained data were processed 
using Netzsch Proteus Thermal Analysis software.

2.5. Electrochemistry

2.5.1. Cyclic voltammetry
Cyclic voltammetry (CV) measurements on 1–4 and 8 were per-

formed in MeCN and CH2Cl2 at 295 K in an argon atmosphere using a 
standard electrochemical glass cell with a solution volume of 5 mL 
connected to a PG 310 USB potentiostat (HEKA Elektronik, Germany) 
with a three-electrode circuit. A stationary Pt disc electrode (electrode 
area A = 0.0122 cm2) calibrated with Fc/Fc+ system as a standard was 
used as a working electrode; and a Pt helix, as an auxiliary electrode. 
Peak potentials were quoted with a reference to a saturated calomel 
electrode (SCE) connected to the cell using a bridge with 0.1 M of sup-
porting electrolyte in MeCN/CH2Cl2. A 0.1 M solution of [Et4N][ClO4] in 
MeCN/CH2Cl2 was used as a supporting electrolyte. All CV curves were 
measured using a triangular potential sweep within the potential sweep 
rates 0.1–1.5 V s− 1. The dependences of the first reduction peak current 
on potential sweep rate were analyzed with Randles-Ševčik equation 
[123] using Matlab R2018b software.

2.5.2. Cottrell analysis
Cottrell curves (CCs) [123] for 1–4 and 8 were measured in MeCN 

under the same experimental conditions as in the CV experiments. The 
initial potential was held at 0.0 V (vs. SCE) for 10 s, and then pulsed to 
the corresponding values (ESI). The duration of Cottrell measurements 
was 15 s. The experiments were carried out in two steps at the same 

potentials. The first step included a blank experiment without a depo-
larizer. The second step was carried out after adding the depolarizer. The 
resulting CCs were obtained as the difference between the second step 
curves and the blank curves, and analyzed with the Matlab R2018b 
software.

2.6. EPR spectroscopy

Electron paramagnetic resonance (EPR) spectra of [M]⋅– (M = 1–4, 
8) were measured with an ELEXSYS E− 540 spectrometer (X-band, MW 
frequency ~9.87 GHz, MW power 20 mW, modulation frequency 100 
kHz, and modulation amplitude 0.007 mT) equipped with a high-Q 
cylindrical resonator ER4119HS. For the measurements, potentiostatic 
ECR of M (~1 mM in a dry MeCN (1–4, 8) and CH2Cl2 (2–4) with 0.1 M 
[Et4N][ClO4] as a supporting electrolyte) at the potential of the first 
cathode peak was carried out at 295 K under anaerobic conditions. 
Potentiostatic electrolysis was performed in an electrochemical cell for 
EPR measurements equipped with Pt working electrode with an Ellins P- 
20X potentiostat (Russia). Simulation of the experimental EPR spectra 
was accomplished with the Winsim 2002 program [124]. The Simplex 
algorithm was used for optimization of hfc constants a and linewidths. 
The hfc constants a1H < 0.004 mT, which are not exhibited in the 
spectra, were obtained by simulation.

2.7. Spectroelectrochemistry

Spectroelectrochemical (SEC) studies on M (M = 1–4, 8) were per-
formed at 295 K in MeCN. The concentrations of M were optimized 
based on their solubility in MeCN. A CS9330 SEC cell (PR China) 
equipped with a Pt mesh working electrode was used; all cell manipu-
lations were performed in a glovebox. An Ag/AgCl pseudo-reference 
electrode was used as a standard, and a Pt wire as a counter electrode. 
The cell was connected to a PG 310 USB potentiostat (HEKA Elektronik, 
Germany) with a three-electrode circuit and simultaneously to an 
Avantes AvaSpec-ULS2048CL-EVO UV–Vis–NIR spectrophotometer via 
a fiber-optical line. The UV–Vis–NIR spectra of the reduced solutions 
were recorded in a normal D(λ) and differential D(λ) − Dblank(λ) forms, 
where D(λ) is the optical absorption spectrum recorded during electro-
chemical reduction (ECR), and Dblank(λ) is the spectrum of M in MeCN 
recorded before the ECR. Cyclic electrolysis was performed in the po-
tential sweep range covering the first one-electron reversible stage of the 
ECR with a potential sweep rate 5 mV s− 1. The effective volume of the 
cathode part of the SEC cell was V = 6.3⋅10− 4 dm3 as estimated by 
comparison of SEC and optically transparent electrode (OTE) measure-
ments on 8 (ESI). The integration of macroelectrolysis time traces I(t) 
was performed using the PotMaster software (HEKA). The UV–Vis–NIR 
spectra of [M]⋅– were normalized with the Matlab R2018b program. Final 

Table 3 
Peak a and half-wave potentials (V) of compounds M in solvents S, diffusion coefficients b (D × 10− 5, cm2⋅s− 1) in MeCN, negatives of the frontier MOs (HOMO/LUMO) 
energies and the energy gap ΔE between the highest occupied and the lowest unoccupied electronic levels (eV) estimated from CV and optical data.c,d

M S D Ep
1C Ep

1A E1/2
1 Ep

2C Ep
2A E1/2

2 HOMO/LUMO ΔE

1 MeCN 1.0 ‒1.68 ‒1.62 ‒1.65 – – – 6.21/2.72 3.49
2 MeCN 0.94 ‒1.54 ‒1.49 ‒1.52 ‒2.23 – – 6.16/2.85 3.31

CH2Cl2 – ‒1.51 ‒1.38 ‒1.45 – – – – –
3 MeCN 0.91 ‒0.66 ‒0.60 ‒0.63 ‒1.49 ‒1.42 ‒1.46 6.51/3.74 2.77

CH2Cl2 – ‒0.59 ‒0.49 ‒0.54 ‒1.38 ‒1.29 ‒1.34 – –
4 MeCN 0.43 ‒0.55 ‒0.49 ‒0.52 ‒1.33 ‒1.25 ‒1.29 6.56/3.85 2.71

CH2Cl2 – ‒0.48 ‒0.41 ‒0.45 ‒1.19 ‒1.12 ‒1.16 – –
8 MeCN 0.8 ‒0.76 ‒0.70 ‒0.73 ‒1.62 ‒1.52 ‒1.57 6.51/3.64 2.87

a The Ep potentials are measured at the 0.1 V s− 1 sweep rate and quoted with the reference to SCE.
b Determined from the Randles-Ševčik and Cottrell analyses [123] (ESI).
c The LUMOs energies are calculated from the E1/2

1 values (MeCN) with ferrocene (4.8 eV) as the reference compound; the HOMOs energies are calculated as the 
difference between those of the LUMOs obtained with CV data and optical gap 1240/λon (MeCN; Table 2). For 1–4, cf. DFT-calculated energies and ΔE of the frontier 
MOs (Table 1).

d The DFT-calculated aEA1 (Table 1) correlates with the E1/2
1 measured in MeCN (ESI); Ep

1C of 5 and 6 is ~ − 1.5 and − 1.3 V vs. SCE, respectively [63].
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data analysis was performed using the Igor PRO 8.0 software 
(Wavemetrics).

2.8. Photophysics

Electronic absorption (UV–Vis) spectra were collected using JASCO 

V-770 UV–Vis–NIR spectrophotometer. All the measurements were 
performed for solutions in quartz cells with a 1 cm pathlength. Photo-
luminescence spectra were measured using Horiba Jobin-Yvon Fluo-
rolog QM-75-22-C spectrofluorimeter with a use of 75 W xenon arc lamp 
(PowerArc, HORIBA, Kyoto, Japan). A Hamamatsu R13456 (Hama-
matsu Photonics, Hamamatsu, Japan) cooled photomultiplier tube 

Fig. 5. EPR spectra at 295 K of (a) [1]⋅– (MeCN), (b) [2]⋅– (MeCN), (c) [3]⋅– (CH2Cl2), (d) [4]⋅– (Me2S––O), and (e) [8]⋅– (MeCN; for CV and EPR of [8]⋅–, see also [38]) 
obtained by potentiostatic electrolysis at the potentials of the first ECR peak. For hfc constants, see Table 4.
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sensitive in UV–Vis–NIR region (200–950 nm) was used as the detector. 
Photoluminescence decays (ESI) were collected by Time-correlated 
single photon counting (TCSPC) method using the same spectrofluo-
rimeter. The setup included PicoQuant LDH-P-C-375B and LDH-P-C-405 
(PicoQuant, Berlin, Germany) laser diode heads as a pulsed excitation 
source emitting at 376 nm and 405 nm with a repetition rate 1 MHz and 
pulse duration FWHM of 40 ps. Corresponding instrument response 
functions were taken into account for all optical measurements. The 
experiments were conducted in air at atmospheric pressure and room 
temperature. No tendency for the compounds to degradation of optical 
properties was observed during the measurements.

2.9. Quantum chemical calculations

Density functional theory (DFT) calculations of the first adiabatic 
electron affinity and ionization energy (aEA1 and aIE1, respectively), 
spin densities and Mulliken atomic charges (ESI) of M, [M]⋅– and [M]⋅+

(M = 1–4) were performed at the (U)B3LYP/def2-tzvp level of theory 
with full optimization using the Gaussian09 suite of programs [125]. 
Time-dependent density functional theory (TD-DFT) [126] calculations 
were performed using BLYP/and B3LYP/def2-tzvp levels of theory with 
D3 version of Grimme’s dispersion. The hfc constants were calculated at 
the (U)B3LYP/6-31g(d) level of theory.

3. Results and discussion

According to XRD (Fig. 1; ESI), molecules of 1–4 are planar, bond 
distances and bond angles are typical [127]. The crystal structures of 1 
[12], 2 [39], and 4 (Fig. 1) exhibit typical S⋯N ChBs of 3.09 Å (1), or 
Se⋯N ChBs of 2.37–2.91 and 2.90 Å (2, 4, respectively), forming 
[E⋅⋅⋅N]2 rhombic σ-dimers normal for solid 1,2,5-selenadiazoles [49,59,
60,62,101,102,116,128]. In contrast, the crystal structure of 3 (Fig. 1) 
does not feature S⋯N ChBs forming lateral σ-dimers. Generally, the 
energy of E⋅⋅⋅N interactions (E = S, Se, Te) strongly depends on the 
nature of E and increases in the order S < Se < Te [51,57,129]. All 1–4 
manifest favorable for charge transport shortened π-contacts/π-stacking 
with interplanar separations of 3.31–3.47 Å for 1 [12] and 3, and 
3.41–3.50 Å for 2 [39] and 4, which are normal of (het) areno-fused 1,2, 
5-chalcogenadiazoles (chalcogen = S, Se) [102,130]. The sum of van der 
Waals (VdW) radii of S and N atoms is 3.55 Å; and Se and N atoms, 3.48 
Å [131].

The DFT-calculated aEA1 of 1–4 varies on a broad scale from 0.82 to 
2.13 eV; and the first adiabatic ionization energy (aIE1), on much nar-
row one from 7.89 to 7.98 eV (Table 1). Expansion of the conjugated 
π-system is expected to increase aEA1 [59,61,109,110], however, 1 and 

2 exhibit virtually the same aEA1 as the archetypal 5 and 6, respectively; 
whereas 3 and 4 have ~1 eV higher aEA1 (Table 1), which could be 
attributed to either the extension of a π-system or/and 
electron-accepting effect of pyrazine N atoms. However, if 7 is taken a 
parent compound for 3, the extension of a π-system decreases aEA1 value 
by ~0.1 eV. The expanding of the conjugation on passing from 8 to 4 
provides only ~0.2 eV increase in aEA1. Overall, it is seen that 
π-extension has its limitation as an instrument for the tuning of aEA1 
values of polycyclic 1,2,5-chalcogenadiazoles. The calculated values are 
below EA1 of C60 fullerene [132] (Table 1). It is important that for 
optoelectronics/photovoltaics applications of fullerene acceptors 
namely reduced EA1 is required for better matching energy levels of 
donors [133] and the same can be expected for non-fullerene acceptors. 
For 1–4, aIE1 of 1–2 eV, well-correlating with the first electrochemical 
reduction potential (see below and in ESI), suggests a challenging 
electron injection from standard electrode. The energy gap ΔE between 
the frontier MOs varies between ~2.6 (2) and ~2.9 (3) eV (Table 1); 
these values are, obviously, different [117] from those obtained exper-
imentally (below).

Compounds 1–4 are thermally-stable in both inert and air-like 
oxidizing atmospheres, and volatile at normal pressure. The atmo-
sphere slightly affects their melting temperatures of ~150 (1), 210 (2), 
290 (3), and 350 (4) oC; as well as onset temperatures of mass loss (To) of 
~160 (1, vaporization from melt), 180–185 (2, sublimation), and 
230–235 (3, sublimation) oC. Compound 4 is exception with To ~260 
(sublimation) under inert conditions, and ~280 ◦C (oxidation, subli-
mation) under oxidizing conditions (Fig. 2).

Similar to compounds 5, 6, and their derivatives [134–140], com-
pounds 1–4 exhibit absorption in the visible spectral range. Their ab-
sorption spectra comprise multiple intense bands within the 280–320 
nm region, attributed to π→π* electronic transitions, along with addi-
tional absorption bands located in the long-wavelength region. The 
latter bands demonstrate higher absorbance (log ε ~ 4.2–4.5) compared 
to those in the deep UV region. The substitution of S with Se leads to 
band broadening, accompanied by red shifts in the absorption maxima 
of 20 nm for compound 2 and 15 nm for compound 4 (see Fig. 2 and 
Table 2).

Quantum chemical calculations of accurate energies of electronically 
excited states of complex organic molecules are still challenging [141]. 
It is known that Generalized Gradient Approximation (GGA) type 
functionals are more suitable for describing the UV–Vis absorption of 
simple aromatic molecules than Global Hybrid (GH) ones [142]. Indeed, 
TD-DFT calculations reveal that the absorption spectra of 1 and 2 are 
significantly better reproduced using GGA functional BLYP; whereas 
those of 3 and 4, by GH functional B3LYP. The calculations suggest that 
the S0 → S1 vertical transition in 1–4 corresponds to the HOMO → LUMO 
transition and thereby a 1ππ* character of the S1 state (Table 2; ESI).

The emission of fused 1,2,5-chalcogenadiazoles is molecular- 
structure- and aggregation-state-dependent (and in solution, solvent- 
dependent); thereby, it is tunable [16,43,73–75,77,129,138–140]. For 
some derivatives of 5, room-temperature red PH is reported [85,140,
143–145]. Compounds 1–4 emit in the blue spectral region, with 
maximum emission wavelengths λmax ranging in solution from 400 to 
450 nm; the emission spectra exhibit Stokes shifts of about 4200 cm− 1 

for 1, 3800 cm− 1 for 2, 800 cm− 1 for 3, and 2700 cm− 1 for 4; these shifts 
are smaller those for 5 and 6 (Fig. 3, Table 2). The substitution of S with 
Se induces a red shift in the emission maximum by 18 nm for 2 and by 
45 nm for 4. The emission spectra of 3 show a multiband shape caused 
by vibronic structure in the excited state. The excited-state lifetimes 
were determined from photoluminescence decays recorded upon pulsed 
laser excitation at 376 nm for 2 and 405 nm for 3 and 4. The obtained 
kinetic traces were well-fitted by either bi- or mono- (4) exponential 
models (ESI) yielding the short lifetime τ1 ~1 ns (ns) for 3 and 4, and ~2 
ns for 2; while long-time component τ2 is ~9 ns for 2 and ~7 ns for 3 
(Table 2). Generally, small organic dyes have lifetimes in the range of 
~0.1–20 ns. Overall, the findings suggest that the emission of 2–4 have a 

Table 4 
Experimental and B3LYP/6-31g(d)-calculated hfc constants (G) in EPR spectra 
of [M]⋅– (M = 1–4, 8) obtained by potentiostatic electrolysis in different solvents 
at the potential of the first cathode peak.

[M]⋅– Solvent Hfc constants

EPR B3LYP

[1]⋅– 

a
MeCN 5.45 (2 N), 0.71 (2H), 

0.37 (2H), 0.18 (2H)
5.53 (2Ndiazole), − 1.20 (H), − 0.77 
(H), 0.27 (H), 0.02 (H)

[2]⋅– 

a
MeCN 6.07 (2 N), 0.96 (2H), 

0.64 (2H), 0.24 (2H)
5.65 (2Ndiazole), − 1.19 (H), − 0.50 
(H), 0.31 (H), − 0.18 (H)

[3]⋅– CH2Cl2 3.30 (2 N), 2.57 (2 N), 
0.76 (2H), 0.55 (2H), 
0.16a (2H), 0.11a (2H)

3.72 (2Npyrazine), 2.94 (2Ndiazole), 
− 0.80 (H), − 0.50 (H), 0.26 (H), 
0.000 (H)

[4]⋅– DMF 3.33 (2 N), 2.86 (2 N), 
0.74 (2H), 0.59 (2H), 
0.08a (2H), 0.05a (2H)

3.42 (2Npyrazine), 3.09 (2Ndiazole), 
− 0.80 (H), − 0.51 (H), 0.26 (H), 
0.01 (H)

[8]⋅– 

a
MeCN 3.88 (2 N), 2.57 (2 N) 3.58 (2Ndiazole), 3.20 (2Npyrazine), 

− 0.44 (H), − 0.40 (H), − 0.28 (H), 
0.21 (H), 0.11 (H)

a The a1H are smaller than EPR linewidths and were obtained by simulation 
only approximately.
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Fig. 6. (a, d, j, g, m) 3D UV–Vis–NIR differential reduction SEC surfaces of M in MeCN; (b, e, h, k, n) time dependence of the charge passed during electrolysis (left 
axes), together with the corresponding kinetics of the selected optical absorption bands (right axes); (c, f, i, e, o) colour-indicated electronic absorption spectrum of M, 
optical absorption spectra measured at the maxima of the charge time traces, and UV–Vis–NIR spectra of [M]⋅– calculated using equations (1)–(3); (M = 1–4, 8). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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fluorescence nature [146,147].
Redox properties of 1 were reported previously only for reduction 

[12,148]; however, EPR spectrum of [1]⋅– was not presented. In this 
work, CV/EPR and SEC studies were performed for 1–4 and 8. Electro-
chemical oxidation of M in MeCN showed irreversible multi-electron 
oxidation peaks in (M = 2–4) indicating the instability of their 
oxidized products; whereas in CH2Cl2 no oxidative activity was observed 
(M = 3 and 4) in the electrochemical window of this solvent (ESI). These 
findings raise doubts about the possibility of obtaining long-lived [M]⋅+

(M = 2–4).

With electrochemical reduction, in the potential range 0 > E > − 2.1 
V 1 and 2 showed a single one-electron reversible CV wave (peaks 1C- 
1A) associated with the formation of long-lived [M]⋅– (M = 1, 2) indi-
cating an E-process of the electrochemical reduction (ECR, Fig. 3; ESI). 
The extension of the π-electron system in 3 and 4 leaded to EEC mech-
anism of the ECR associated with the formation of the long-lived [M]⋅– 

and less-stable [M]2‒ (M = 3, 4). The [3]2‒ is lesser stable than [4]2‒ 

because the second stage of the ECR of 3 becomes reversible at the po-
tential sweep rate ν > 0.3 V s− 1, whereas the second CV wave of 4 is 
reversible over the whole range of ν studied (Fig. 4). The CV of 8 showed 
a reversible one-electron CV wave in the potential range E < − 1.2 V, and 
an EEC process in the expanded potential range E > − 1.2 V; the second 
ECR stage is essentially irreversible, indicating the instability of [8]2‒ 

(Fig. 4). The peak and E1/2 potentials of 3 and 4 are significantly less 
negative than those of 1 and 2 (Table 3). In accordance with the general 
trend [61], the potentials in pairs 1 and 2, and 3 and 4, exhibit less 
negative values for Se derivatives as compared with S ones. The E1/2 
potentials perfectly correlate with the DFT-calculated aEA1 (Tables 1 
and 3; ESI). The identity of [M]⋅– was confirmed by EPR (Fig. 5; ESI) 
under conditions of potentiostatic electrolysis of M (M = 1–2, 8) in 
MeCN, CH2Cl2, or Me2S––O, together with DFT calculations (Table 4); 
CH2Cl2 and Me2S––O were used due to the low solubility of the corre-
sponding precursors M in MeCN. According to EPR, [M]⋅– (M = 1–4) 
possess a planar rigid structure, i.e., they are π-radicals. For [M]⋅–, some 
hyperfine coupling (hfc) constants a1H are smaller than the EPR 
experimental linewidths; those were estimated by simulation (Table 4). 
The a14N indicate C2V symmetry of [M]⋅– (M = 1–4) and Cs symmetry of 
[8]⋅–. According to DFT, the charge and spin densities of [M]⋅– (M = 1–4) 
are concentrated at their heterocyclic moieties (ESI).

For the first reversible reduction CV waves (Fig. 4), the SEC surfaces 
representing the time-dependent superposition of UV–Vis–NIR spectra 
of M and [M]⋅– (M = 1–4, 8) were obtained (Fig. 6; ESI). For all M in 

Fig. 7. Normalized Vis-NIR spectra of [M]⋅– from SEC (a, b) and chemical reduction (c, d): M = 1–4 (a, c), 8 (b, d); for neutral M, see Fig. 2, Table 2. Color code for (a, 
c): [1]⋅– green, [2]⋅– red, [3]⋅– light green, and [4]⋅– magenta. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.)

Table 5 
Wavelengths λmax/extinction coefficients log ε at the maxima of UV–Vis–NIR 
spectra of [M]⋅– in MeCN from SEC (M = 1–4, 8) and chemical reduction in 
MeCN (M = 3, 4) and thf (M = 1, 2, 8).

[M]⋅– λmax, nm/log ε

SEC chemical reduction a

[1]⋅– 367/4.055, 520/3.539, 900–1000 
(shoulder)/3.312

372, 552, 900–1000 (shoulder)

[2]⋅– 386/4.340, 502/3.635, 851 
(shoulder)/3.500

395, 439, 535, 665, 900 
(shoulder)

[3]⋅– 380/3.761, 416/3.037, 581/3.266, 
631/3.343

397/4.161, 421/4.222, 587/ 
3.261, 640/3.413

[4]⋅– 372/3.727, 433/4.356, 549/3.479, 
627/3.499

379/3.801, 440/3.452, 555/ 
3.474, 636/3.496

[8]⋅– 403/4.406, 586/3.490, 637/3.571 
(3.574)b

412/4.402, 590/3.489, 642/ 
3.582

a In the form of [K(18-crown-6)]+[M]⋅– salts. Reducing agents: elemental K in 
thf (M = 1, 2), PhOK in MeCN (M = 3, 4), KC8 in thf (M = 8). Extinction co-
efficients of [1]⋅– and [2]⋅– were not determined due to their poor stability under 
chemical reduction in thf.

b Obtained by OTE method (ESI).
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MeCN, the M → [M]⋅– transformation under cyclic electrolysis in the 
given potential sweep range at ν = 5 mV s− 1 was incomplete. Taking into 
account the fully reversible processes observed at the first ECR stages for 
all M (Fig. 4), the amount of [M]⋅– formed during the cyclic electrolysis 
at time t (Ct

RA) was estimated as follows [149]: 

CRA
t =

− Qt
t0

(n × F × V)
(1) 

Qt
t0 =

∫ t

t0
I(t)dt (2) 

where Qt
t0 is the charge transferred through the SEC cell during the time 

from the beginning of [M]⋅– formation to the maximum on the charge 
time trace Q(t) (Fig. 6); n = 1 is the number of electrons transferred; F is 
the Faraday constant, V is the effective volume of the cathode part of the 
SEC cell, in which the forming [M]⋅– is assumed to be uniformly 
distributed during electrolysis due to the low potential sweep rate [149]; 
and I(t) is the SEC macroelectrolysis curve (ESI).

For the reversible process, the spectral profile of the SEC differential 
surface at time t is Ddiff

t (λ) = DRA
t (λ) − DNeu

t (λ), where DNeu
t=0(λ) =

εNeu(λ)CNeu
0 ⋅l is the blank in the differential mode of the SEC experiment 

(l = 0.2 cm is the optical path). Taking into account the equal amounts of 
the formed [M]⋅– and the loss of the initial M, i.e., CRA

t = CNeu
t , and 

formulae (1) and (2), the electronic absorption spectrum (EAS) of [M]⋅– 

is calculated as follows: 

DRA
t (λ)=Ddiff

t (λ) +
− Qt

t0
FVCNeu

0
DNeu

t=0(λ) (3) 

where DNeu
t=0(λ) is the optical spectrum of the starting compound obtained 

in normal mode (Fig. 6). The extinction coefficients of RA at the ab-
sorption band maxima, εRA(λi), were calculated as follows: 

εRA(λi)=
FV

− Qt
t0⋅l

DRA
t (λi) (4) 

where DRA
t (λi) is the optical absorption at the maximum of the absorp-

tion band. For calculations, the maximum value of |Q(t)| in the corre-
sponding dependences was taken (Fig. 6).

The [M]⋅– (M = 1, 3, 8) observed by EPR after electrochemical 
generation (for [8]⋅–, see also [38]) and UV–Vis–NIR, were prepared by 
chemical reduction of M with elemental K, KC8, or KSPh in the presence 
of cyclic polyether 18-crown-6 (cf. [54,55,150,151]). The authenticity 
of [M]⋅– was confirmed by EPR, and they were isolated in the form of 
thermally-stable [K(18-crown-6)]+[M]⋅– salts and characterized by XRD 
(below). Comparison of UV–Vis–NIR spectra of the salts with those from 
SEC confirms assignment of the latter to [M]⋅– (Fig. 7, Table 5). In the 
300 < λ < 1000 nm spectral area, absorption bands of [M]⋅– (M = 1–4, 8) 

Fig. 8. XRD molecular structures and fragments of crystal structures of [K(18-crown-6)]+[M]⋅– (M = 1, CCDC 2338056; 3, CCDC 2338057; 8, CCDC 2338058). 
Shortened intermolecular contacts in the crystal structures (Å): M = 1, K⋅⋅⋅π 3.33; 3, K⋅⋅⋅π 3.36–3.63; 8, K⋯N 2.82–2.94, π⋅⋅⋅π 3.33. Color code (H atoms omitted): C 
grey, K purple, N blue, O red, S yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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are Δλ bathochromically shifted with respect to those of M (Fig. 3, 
Table 2). The Δλ and aEA1 values correlate: for example, the intense 
absorption band in the range 367 < 433 nm shifts bathochromically on 
passing from S containing [1]⋅– to Se containing [2]⋅–, and on passing 
from [1]⋅– and [2]⋅– to π-extended [3]⋅– and [4]⋅– (Fig. 7). This trend 
resembles that which was observed for 2,1,3-benzochalcogenadiazoles 
(chalcogen = S, Se, Te) [61]. The spectra of [1]⋅– and [2]⋅– exhibit a 
noticeable absorption in Vis-NIR area, whereas those of [3]⋅– and [4]⋅– 

do not. The [8]⋅– also did not reveal a noticeable NIR absorption (Fig. 7).
XRD structures of [K(18-crown-6)]+[M]⋅– exhibit stacks (M = 1) or 

layers (M = 3) with coplanar orientation of [K(18-crown-6)]+ and [M]⋅– 

(Fig. 8). This orientation is markedly different from the packing modes 
of previously studied RA salts with [K(18-crown-6)]+, where RAs are 
typically involved in shortened K⋯N electrostatic contacts [6]. In 
contrast, the structure of [K(18-crown-6)]+[8]⋅– contains π-dimers of 
[8]⋅– (π⋅⋅⋅π contact, 3.33 Å) similar to those of two other 1,2,5-chalcoge-
nadiazolidyl RAs (3.18 Å, chalcogen = Se [151]; 3.25 Å, chalcogen = S 
[152]; the sum of VdW radii of two E atoms is 3.54, 3.64, 3.78 Å for E =
C, S, Se, respectively [131].

In contrast to previously studied 1,2,5-chalcogenadiazoles [6,100,
153–155], 1–4 do not form CT complexes with tetrathiafulvalene under 
conditions of cocrystallization from organic solvents.

4. Conclusions

This study, based on TG-DSC, XRD, UV–Vis–NIR/FL, CV, EPR, and 
SEC measurements, together with DFT and TD-DFT calculations, and 
performed on neutral M and reduced [M]⋅– states of 1,2,5-thia/selena-
diazoles 1–4 suggests that according to the thermal, structural, opti-
cal, and redox properties 1–4 are promising small-molecule organic 
dyes/non-fullerene electron acceptors for optoelectronics. Their ad-
vantages embrace synthetic availability, planar π-extended molecular 
structures, absorption and emission of visible light, low reduction po-
tentials, and reversible RA states, whose UV–Vis–NIR spectra are 
different from those of the neutral precursors. DFT-calculated aIE1 of 
1–4 is practically constant as 7.9 ± 0.1 eV, whereas aEA1 varies on a 
broad scale from 0.82 to 2.13 eV. The experimentally estimated energy 
gap ΔE between the highest occupied and the lowest unoccupied elec-
tronic levels is narrower for 3 and 4 (~2.7–2.8 eV) than for 1 and 2 
(~3.3–3.4 eV). It is found that π-extension, provoking red shifts in 
UV–Vis and FL spectra of polycyclic 1–4 and decrease of ECR potentials 
as compared with their bicyclic archetypes 5 and 6, has its limitation as a 
tool for the tuning of aEA1 values. The redox and optical properties of 
1–4 also depend on the nature of chalcogen atoms, and replacement of S 
by Se also works for red shift of UV–Vis and FL bands and decrease of 
ECR potentials; with Se derivatives, SOC can potentially be involved in 
optoelectronic properties. These findings can be used in molecular 
design of new small-molecule dyes, as well as pendant electron-acceptor 
groups of electroactive polymers [156–158], for organic optoelec-
tronics. Overall, compounds 1–4 exhibit more favorable combination of 
functional properties, especially redox and photophysical ones, as 
compared with reference compounds 5–9.

In the context of further molecular design, it should be noted that the 
frontier MOs of 1–4 are energetically and spatially closed (ESI); the 
latter in the sense that they are localized in the same spatial area inside 
the molecular VdW surface. With carbocyclic substitution, it looks 
possible to achieve spatial separation of the frontier MOs conserving 
their energetic proximity, i.e., transform 1–4 into highly promising 
multiresonant fluorophores [159,160]. This can be one of directions of 
further design and synthesis.

In the chalcogen context, Te analogs, which are generally promising 
[35,61], in the case of 1,2,5-telluradiazoles exhibit disadvantages 
associated with low solubility and volatility caused by strong Te⋯N ChB 
[47,49–51,57,116], as well as instability towards atmospheric moisture 
[5]. In further work, other than the aforementioned functionalized de-
rivatives of 1–4, e. g. partially or fully halogenated (halogen = F, Cl), 

also worth special attention. Specifically, solid halogenated aromatics 
frequently exhibit well-ordered structures controlled by 
polyhaloarene-polyhaloarene (halogen = F, Cl) π-stacking [161–164] 
similar to better studied arene-polyfluoroarene [165] (or, broader, 
arene-polyhaloarene [166]) π-staking, which in the case of 1,2,5-chalco-
genadiazoles might be in cooperativity with lateral ChB. Also haloge-
nation frequently improves functional properties [167–173]; 
particularly, Stocks shifts for tetrafluorinated derivatives of 5 and 6 are 
larger than for the parent compounds [174]. And fluorinated polycyclic 
chalcogen-nitrogen heteroaromatics possess stable RA states [65,175].
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[161] Linnemannstöns M, Schwabendissen J, Neumann B, Stammler HG, Berger RJF, 
Mitzel NW. Aryl-aryl interactions in (Aryl-perhalogenated) 1,2-diaryldisilanes. 
Chem Eur J 2020;26:2169–73. https://doi.org/10.1002/chem.201905727.
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