«УТВЕРЖДАЮ»

И.о. директора Института нефтехимии и катализа обособленное структурное подразделение Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук д.х.н., профессор РАН

В.А. Дьяконов 20 февраля 2020 г.

ОТЗЫВ

ведущей организации на диссертационную работу **Брусенцевой Ольги Игоревны** "Модификация структуры фурановых лабданоидов посредством реакций, катализируемых соединениями меди", представленную на соискание ученой степени кандидата химических наук по специальности 02.00.03 - Органическая химия

Возрастающая популярность и важная роль лекарств, действующим началом которых являются природные соединения или их полусинтетические производные, хорошо известна И общепризнанна. Однако низкая растворимость применяемых в медицинской практике ценных растительных веществ, препятствует их активному терапевтическому использованию. В связи с этим важнейшей задачей химиков-синтетиков является получение на основе нативных растительных веществ новых соединений, которые характеризуются высокой специфической физиологической активностью и лучшей биодоступностью. С этой точки зрения, диссертационная работа Брусенцевой Ольги Игоревны, является весьма актуальной, поскольку связана с поиском методов модификации фурановых лабданоидов, надежным источником которых являются хвоя и живица хвойных растений, которыми богата Россия. Суть представленного исследования заключается в разработке подходов к селективной модификации фурансодержащего дитерпеноида фломизоиковой кислоты с введением дополнительных алкинильных, гетероциклических и гликозидных заместителей, синтезу N-гликозил-1,2,3триазольных конъюгатов фуранолабданоидов, также соединений макрогетероциклической структуры лабдановым фрагментом, выявлению закономерностей и факторов, определяющих выход и состав продуктов.

Об актуальности исследования свидетельствует также поддержка работы грантами Российского научного фонда и РФФИ.

Диссертация написана в классическом стиле, состоит из введения, литературного обзора, обсуждения результатов, экспериментальной части, выводов, списка цитируемой литературы и приложения, содержащего результаты испытаний синтезированных диссертантом соединений. Текст работы изложен на 157 страницах. Список цитируемой литературы содержит ссылки на 228 работ.

Литературный обзор выполнен на тему «Макроциклические дитерпеноиды: нахождение в растениях, биологическая активность, некоторые подходы к полному синтезу» (57 стр.). Обзор включает две части. В первой, приведены структуры дитерпеноидов цембранового, ятрофанового, латиранового и ингенанового рядов, данные об их биологической активности, а также примеры синтеза природных макроциклических дитерпеноидов с рассмотрением условий внутримолекулярной макроцикличации. Во второй части обзора рассмотрены и обобщены примеры синтеза макроциклических соединений, включающих каркас би-, три- и тетрациклических дитерпенов. При этом, в разработке методов макроциклизации дитерпеноидов автором отмечается роль Казанской школы исследователей (группа профессора Катаева В.Е.). Обзор изложен с привлечением 157 литературных источников, из которых более половины (85 работ) опубликовано за последние 5 лет. В завершении анализа литературного материала диссертант делает вывод о важности развития исследований по созданию селективных методов макроциклизации, которые могут быть основаны как на классических, так и на каталитических методах.

Основное содержание диссертации изложено в главе «Обсуждение результатов». Первый раздел посвящен синтезу производных фломизоиковой кислоты, содержащих пропаргильные заместители в различных положениях остова (при кислотной функции, в положении С-7 и в фурановом цикле). В результате этого исследования предложены удобные методы синтеза ряда ценных алкинилзамещенных производных фломизоиковой кислоты и ее метилового эфира. Дальнейшее развитие исследования было связано с изучением реакции 1,3-диполярного циклоприсоединения синтезированных терминальных алкинов с полученными по известным методикам азидами сахаров (α-Dглюкозы, D-(+)-ксилозы, L-арабинозы, D-галактозы) в присутствии Cu(I)-катализатора. В результате этого исследования предложен эффективный способ синтеза N-гликозил-1,2,3триазольных конъюгатов лабданоидов. Следующий раздел диссертации включал получение конъюгатов фуранолабданоидов с глюкуроновой кислотой. Последовательной функционализацией фломизоиковой кислоты по карбоксильной группе и фурановому циклу, включающей стереоселективное глюкуронилирование, региоселективное формилирование, восстановительное аминирование и CuAAC реакцию полученного терпеноидного алкина с 1-дезокси-2,3,4-три-*O*-ацетил-1-азидо-α-*D*-глюкопирануронатом, разработана схема синтеза лабданоидного диглюкуронида с общим выходом 7%. Синтезированы и охарактеризованы моноглюкурониды фломизоиковой кислоты.

Важным результатом исследования диссертанта является разработка селективных методик синтеза бис-триазолилсодержащих макроциклических соединений с встроенным фурановым циклом. Для синтеза этих соединений использована конвергентная стратегия, включающая получение α,ω-диазидов и метил-15,16-бис-[*N*-(трет-бутоксикарбонил)-N-(пропинил)аминометил]-15,16-лабдатриеноата и их Сu(I)-катализируемое циклоприсоединение. Реализации предложенной стратегии способствовало умелое и грамотное применение диссертантом защитных групп и реагентов. Для двух макрогетероциклов по данным ¹Н ЯМР-спектров методом молярных отношений изучена способность связывания с ионами цинка.

Примечательно обнаружение высокой селективной цитотоксичности в отношении опухолевых клеток человека для макроциклического соединения 408 с наибольшим размером циклической полости. Это соединение представляет интерес для дальнейшего изучения в качестве противоопухолевого агента. Для гликозилированных производных фломизоиковой кислоты получены данные об анальгетической активности, проведено сравнение обезболивающего действия с эффектом фломизоиковой кислоты и препарата "Диклофенак-натрий".

Обращает внимание грамотное и квалифицированное применение диссертантом современных инструментальных физических методов установления строения полученных соединений (ЯМР 1 H и 13 C, корреляционные спектры, масс-спектрометрия).

Представленная О.И. Брусенцевой работа является завершенным исследованием, сочетающим высокий теоретический и экспериментальный уровень. Диссертант провел широкое, оригинальное и плодотворное исследование, отличающееся цельностью, большим объемом информации и четкостью изложения.

Применение и умелое использование современных методов идентификации и анализа структуры органических соединений обеспечивает достоверность полученных данных и сделанных на их основе выводов.

Поводов для принципиальной критики работа О.И. Брусенцевой не вызывает. По содержанию диссертации и автореферата возникли следующие вопросы и замечания:

- 1. Некоторые описания структур природных макроциклов (стр.10, абзац 1; стр. 21, абзац 1; стр. 28, абзац 2; стр. 37, абзац 3) малоинформативны.
- 2. В схемы автореферата в изображении структурной формулы фломизоиковой

кислоты вкралась досадная опечатка: изображение асимметрического атома углерода атома C-10 (у двойной связи!) Следует отметить, что в диссертации (кроме таблицы 6) все структуры изображены верно!

3. В тексте диссертации встречаются опечатки, но их количестве незначительно. Например: стр. 93 – соединение **410**; должно быть соединение **408**.

Указанные замечания не затрагивают сути работы и носят рекомендательный характер.

Полученные в диссертационной работе результаты могут быть использованы при проведении исследований на химическом факультете Московского Государственного университета им. М.В. Ломоносова (Москва), Институте физиологически-активных веществ РАН (Черноголовка), Институте технической химии УрО РАН (Пермь), Институте химии Коми НЦ УрО РАН (Сыктывкар), Институте химии УФИЦ РАН (Уфа), Институте нефтехимии и катализа УФИЦ РАН (Уфа), Институте органического синтеза им. И.Я. Постовского УрО РАН (Екатеринбург), Институте элементорганических соединений им. А.Н. Несмеянова РАН (г. Москва), Институте органической и физической химии им. А.Е. Арбузова Казанского НЦ РАН (Казань), НИОХ им. Н.Н. Ворожцова СО РАН (Новосибирск).

По материалам диссертации опубликовано 2 научные статьи в рекомендованных ВАК РФ журналах (Журнал органической химии, Journal of Inclusion and Macrocyclic Chemistry). Результаты исследования доложены на семи Российских и международных конференциях.

На основании вышеизложенного можно констатировать, диссертация ЧТО Брусенцевой Ольги Игоревны «Модификация структуры фурановых лабданоидов, посредством реакций, катализируемых соединениями меди» представляет собой научноквалификационную работу, в которой содержится решение задачи по созданию получения терминальных оригинальных методик алкинов лабданового ряда разнообразного строения, N-гликозил-1,2,3-триазольных конъюгатов лабданоидов, а также макрогетероциклических соединений уникальной структуры с встроенным дитерпеновым фрагментом. Представленная работа является актуальным, цельным и завершенным исследованием, отвечает требованиям, предъявляемым к кандидатским диссертациям и соответствует критериям, изложенным в п. 9-14 Положения о присуждении ученых степеней, утвержденного постановлением Правительства Российской Федерации от 24 сентября 2013 г. № 842, а её автор Брусенцева Ольга Игоревна заслуживает присуждения ученой степени кандидата химических наук по специальности 02.00.03 - Органическая химия.

Настоящий отзыв рассмотрен и утвержден на научном семинаре ИНК УФИЦ РАН (протокол №1 от 13 февраля 2020 г), присутствовало 36 чел. (категории научный персонал).

Ибрагимов Асхат Габдрахманович, доктор химических наук (специальность 02.00.03 - Органическая химия), профессор (специальность 02.00.03 - Органическая химия), зав. лабораторией гетероатомных соединений ИНК УФИЦ РАН главный научный сотрудник, доктор химических наук e-mail: a.ibragimov@mail.ru; тел: 8 347 284-27-50.

Институт нефтехимии и катализа - обособленное структурное подразделение Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук, 450075, Республика Башкортостан, город Уфа, проспект Октября, 141

Телефон: +7 347 284-27-50; e-mail: ipc@ipc-ras.ru, <u>ink@anrb.ru</u>; Beб-сайт: https://ipc-ras.ru/

Я, Ибрагимов Асхат Габдрахманович, согласен на включение моих персональных данных в документы, связанные с работой диссертационного совета Д 003.049.01, и их дальнейшую обработку.

Подпись

19.02.2020 г.

Подпись д.х.н., проф. А.Г. Ибрагимова удостоверяю:

Ученый секретарь ИНК УФИЦ РАН, к.х.н.

Карамзина Д.С.