ОТЗЫВ ОФИЦИАЛЬНОГО ОППОНЕНТА

на диссертационную работу Куимова Анатолия Дмитриевича

«Молекулярное легирование как эффективный метод контроля оптоэлектронных свойств органических светоизлучающих полупроводников», представленную на соискание ученой степени кандидата химических наук по специальности 1.4.4 — физическая химия

В последнее время новые материалы на основе органических л-сопряженных молекул стимулируют быструю разработку и внедрение передовых оптоэлектронных устройств. Преимущества устройств органической электроники заключаются доступности, легкости, гибкости, ударопрочности, прозрачности, а также совместимости с биологическими системами. Несмотря на постоянные разработки, создание эффективных полупроводниковых материалов остается эмпирическим процессом. Это связано с трудностями в настройке свойств органических материалов, зависящих не только от их химической структуры, но и от межмолекулярных факторов, таких как кристаллическая упаковка, агрегация, наличие дефектов и т.д. Различные методы органического синтеза особенности, поскольку каждый новый также вносят свои подход дополнительного изучения структуры и свойств. Создание новых органических материалов с заданными оптическими и полупроводниковыми свойствами и разработка новых методов и подходов к их дизайну, таким образом, является актуальной задачей.

Личный вклад автора. Диссертант участвовал в постановке задачи работы, в разработке эксперимента, обсуждении результатов и подготовке публикаций.

Структура и объём диссертации

Диссертация Куимова А. Д. изложена на 107 страницах машинописного текста, содержит 63 рисунка и 2 таблицы. Работа состоит из списка условных обозначений и определений, введения, пяти глав, основных результатов и выводов и списка цитированной литературы (150 источников).

Во введении представлена актуальность и степень разработанности темы исследования, поставлены цель и задачи, отражены научная новизна, теоретическая и практическая значимость работы, а также положения, выносимые на защиту.

Первая глава представляет собой обзор литературы по проблеме исследования, информирующий о состоянии науки в области исследования.

Во **второй главе** описаны материалы и используемые методы. Вещества были предварительно очищены с использованием метода физического парового транспорта. Для анализа материалов применён комплексный подход, включающий дифференциальную сканирующую калориметрию, рентгеноструктурный анализ, методы

оптической спектроскопии и микроскопии. В работе изготовлены органические полевые транзисторы с верхним затвором и электродами, что позволило оценить подвижность зарядов по вольтамперным характеристикам. Представленные методики широко описаны в литературе и ранее продемонстрировали свою эффективность.

В третьей главе диссертации представлены результаты изучения молекулярного допирования в кристаллах фуранфениленового соолигомера. Показан возможный механизм образования примеси и ее воздействие на оптоэлектронные свойства конечных материалов. Разработана методика определения концентрации самодопанта в образцах, основанная на методах оптической спектроскопии, что позволило оценить следовые концентрации примеси. Обнаружено, что содержание допанта в кристаллах соответствует концентрации в растворе для кристаллизации, а намеренное введение допанта не влияет на структуру материала согласно данным рентгеноструктурного и фазового анализа. Определена оптимальная концентрация допанта с учетом баланса квантового выхода люминесценции и полупроводниковых свойств целевых материалов. Сделан вывод о том, молекулярное допирование является удобным методом ДЛЯ оптоэлектронных свойств органических светоизлучающих полупроводников. использовании оптимальной концентрации допанта и при наличии достаточной длины диффузии экситонов в материале возможно достичь баланса между высоким квантовым выходом люминесценции и высокой подвижностью зарядов.

В четвертой главе предложено практическое применение эффекта самодопирования материалов на примере ариленвиниленовых соолигомеров с длинными алкильными заместителями. Выбор этих материалов обусловлен невозможностью их очистки методами вакуумной сублимации или физического парового транспорта. Для реализации эффекта самодопирования автор предложил и протестировал синтетический подход, ранее не описанный в литературе, для внедрения самодопанта в кристаллы ариленвиниленового соолигомера. Несмотря на то, что данная техника требует дополнительных синтетических усилий, ее преимущества заключаются в возможности настройки оптоэлектронных свойств конечных материалов без использования специализированных методов очистки и без необходимости применения вакуума или высоких температур. Такой подход делает этот метод востребованным для соединений, которые неустойчивы в условиях сублимации или хроматографии, что исключает возможность их деградации. Диссертант проанализировал материалы, предоставленные синтезированные коллегами лаборатории, двумя различными использованием реакции, которая либо подразумевает неконтролируемое образование допанта, либо исключает его. В результате проведенного анализа удалось оптимизировать

концентрацию примесей в конечном материале без применения методов очистки. Важно отметить, что подобный принцип дизайна органических светоизлучающих соолигомеров, исключающий образование примесей на последних этапах, может быть обобщен и применен для других химических превращений.

пятой главе рассмотрено внешнее допирование, отличающееся ОТ самодопирования тем, что требует отдельного синтеза исходного соединения и допанта. Проведен анализ влияния молекулярной структуры и морфологии на эффективность допирования в ряде кристаллов симметричных линейных сопряженных молекул, играющих важную роль в органической оптоэлектронике. В ходе исследования на основе экспериментальных и литературных данных определены основные правила для реализации концепции допирования. Молекулярные параметры, такие как конформация, длина короткой и длинной молекулярной оси, наличие боковых фторсодержащих заместителей, гетероциклических/ароматических фрагментов и небольших концевых заместителей, послужили основными критериями для исследования. Рассмотена широкая библиотека соединений, определены характеристики материалов, которые необходимо учитывать для получения высококачественных сокристаллов. Сделан вывод о том, что учет всех описанных параметров позволяет получить материалы с ценными свойствами, что является ключевым аспектом при направленном дизайне и синтезе кристаллов. Это исследование имеет не только теоретическое, но и практическое значение, так как полученные данные могут быть использованы для создания эффективных допированных систем в органической электронике.

Достоверность выполненных автором исследований не вызывает сомнений.

Содержание диссертации полно отражено в публикациях автора: по теме диссертации опубликованы 3 статьи в высокорейтинговых журналах по профилю исследования и 4 тезиса докладов на конференциях. Основные результаты апробированы на международных и российских конференциях: IFSOE-2019 (International Fall Organic School on Organic Electronics, г. Москва, 2019 г.), ORGEL-2019 (International Workshop on Organic Electronics, г. Новосибирск, 2019 г.), IFSOE-2021 (International Fall Organic School on Organic Electronics, г. Москва, онлайн-конференция, 2021 г.), СПОХ-2021 (Современные проблемы органической химии, г. Новосибирск, 2021 г.), СПОХ-2022 (Современные проблемы органической химии, г. Новосибирск, 2022 г.).

Исследование, выполненное диссертантом, направлено на разработку инновационного подхода в дизайне органических кристаллов полупроводников с использованием метода молекулярного допирования. Этот метод представляет собой

значимый инструмент для настройки цвета излучения, квантового выхода люминесценции, а также для оптимизации полупроводниковых свойств органических кристаллов, используемых в органической оптоэлектронике. Полученные в ходе данного исследования результаты вносят вклад в развитие этой научной области.

По диссертационной работе у оппонента имеется ряд замечаний:

- 1. Следовало бы сократить число глав в диссертации с пяти до трех. Тем более, что главы 3–5 логично перетекают друг в друга и короткие. В этой связи, оппонент отмечает лаконичность изложения диссертантом материала как безусловное достоинство работы.
- 2. Имеются опечатки, ошибки пунктуации, жаргонизмы типа «выдающаяся растворимость» и «эффективность люминесценции» (есть квантовый выход, а не «эффективность»), а также англицизмы типа «селф-допирование», стр. 29 (такого термина нет).
- 3. На рис. 10 стр. 21 непонятные обозначения: «изл =...» Что это такое и зачем это, если на картинке такой надписи нет? Если это люминесценция (в отечественной литературе используется термин «люминесценция», а не «излучение»), то так и надо писать.
- 4. В литературном обзоре приводятся фотофизические параметры, например квантовый выход люминесценции, однако не указывается (например, стр. 17), каким условиям они соответствуют, что необходимо.
- 5. «...необходимо учитывать множество сложных процессов тушения возбужденных состояний, включая (вероятно, сверхбыстрый) безызлучательный распад» (стр. 11). Что такое «безызлучательный распад»?? В литературе по фотонике такого термина нет. Оппонент может только догадываться, что это неверный перевод английского термина, обозначающего безызлучательную дезактивацию фотовозбуждения, а не собственно физический «распад» соединения.
- 6. Неправильное использование терминологии. В русской литературе не принято употребленеие «Ферстеровский» и «Декстеровский» перенос энергии, но *перенос энергии по Ферстеру* и *по Декстеру*. То, что использовано, некорректный перевод английских терминов, которые, к тому же, пишутся по-русски с маленькой буквы.
- 7. Некорректное выражение: «Зачастую FRET реализуется преимущественно для синглетных состояний, а расстояние между молекулами донора и акцептора должно быть в диапазоне 1-5 нанометров» (стр. 31). Диполь-дипольный перенос энергии осуществляется на расстояния до 100 ангстрем, т.е. до 10 нм. Другая неточность здесь же: «В частности, для реализации переноса энергии по данному механизму необходимо значительное перекрывание электронных облаков донора и акцептора, и, соответственно, расстояние между молекулами не должно превышать двух нанометров.» Обменно-резонансный оуществлятся расстояниях перенос энергии на не более суммы взаимодействующих молекул, т.е. *не* до 2 нм, а до 15 ангстрем, т.е. 1.5 нм.
- 8. Что такое «интеграл переноса» и откуда он берется (стр. 34) нет никаких пояснений.
- 9. Не описано, как очищались растворители для проведения фотофизических экспериментов, что особенно важно при проведении таких чувствительных работ, как измерение квантового выхода люминесценции в жидких растворах при низкой концентрации люминофора 10^{-5} — 10^{-6} моль/л. Это принципиальный момент экспериментальной работы.
- 10. Спектры поглощения и люминесценции 1,4-бис(5-фенилфуран-2-ил)бензола в растворе ТГФ на рис. 27. Следовало бы отнести все пики на спектрах, особенно учитывая

разрешение колебательной структуры. Исходя из спектра непонятно, почему люминесценция имеет только два пика (причем 2-й регистрируется в виде плеча), а пик при ~440 нм никак не фигурирует в обсуждении. Аналогичным образом другие пики электронного поглощения (кроме 378 нм) никак не обсуждаются.

- 11. Оппонент должен также отметить ненужное использование термина «фотолюминесценция»: желательно было использовать просто «люминесценцию», поскольку никаких других типов люминесценции в эксперименте не наблюдается.
- 12. Неудачные выражения типа: «Квантово химические расчеты были получены». Надо: «проведены». Здесь же: «Оценка энергий граничных орбиталей для FP5 и FP8 согласно экспериментальным данным [29]» (стр. 62). Непонятно, как проводилась эта оценка, на каких экспериментальных данных (спектроскопия не дает энергии отдельных орбиталей, но их разности), а это принципиальный вопрос. Если приводятся литературные данные, следует оценить надежность их определения и ошибку измерения. Такой же рисунок (рис. 44), в целом, некорректный. Кроме того, выражение некорректно: «Экспериментальные данные: ВЗМО (оценка из ЦВА) и НСМО (рассчитанной по формуле $E_{\text{HCMO}} = E_{\text{ВЗМО}} + E_{\text{g}}$, где E_{g} оптический зазор полученный из точки пересечения спектров поглощения и фотолюминесценции» (стр. 62). Что такое «оптический зазор»?? Такого термина нет, а «точка пересечения спектров» имеет другое название и конкретный физический смысл.
- 13. Хотелось бы иметь более детальное описание электрохимических измерений: вольтамперных характеристик и подвижности зарядов в новых материалах (как проводились, в каких условиях и т.д.)
 - 14. Основные выводы работы следовало бы сократить.

При этом высказанные замечания носят частный характер и не влияют на основное содержание диссертационного исследования, достоверность его результатов и выводов. Диссертационная работа Куимова Анатолия Дмитриевича выполнена на высоком экспериментальном уровне с применением современных физико-химических методов, обеспечивающих выполненному исследованию надежность и достоверность.

Автореферат соответствует основным положениям диссертации и отражает ее содержание.

Заключение

Таким образом, в научно-квалификационной работе Куимова Анатолия Дмитриевича решается задача разработки подходов к дизайну и получению высокоэффективных светоизлучающих органических полупроводников, являющихся перспективными функциональными материалами для оптоэлектроники. Это имеет важное значение для развития современной науки о материалах. Представленная работа по новизне, научной и практической значимости, объему и полученным результатам соответствует требованиям пп. 9–14 «Положения о присуждении ученых степеней», утвержденного Постановлением Правительства РФ №842 от 24.09.2013г., а ее автор,

Куимов Анатолий Дмитриевич, заслуживает присуждения ученой степени кандидата химических наук по специальности 1.4.4 – физическая химия.

At the second of the second of

Официальный оппонент Лукова Галина Викторовна,

доктор химических наук (специальность 02.00.04 — физическая химия),

ведущий научный сотрудник Лаборатории органической и супрамолекулярной фотохимии, Отдел нанофотоники, ФИЦ ПХФ и МХ РАН

Адрес: 142432, г. Черноголовка, пр-т Академика Семенова, д. 1. Телефон: +7(496)5227244. Электронная почта: gloukova@mail.ru

Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр проблем химической физики и медицинской химии Российской академии наук (ФИЦ ПХФ и МХ РАН). Адрес: 142432, Московская обл., г. Черноголовка, проспект Академика Семенова, д. 1. Контактный телефон организации: +7(496)5224474. Е-mail: office@icp.ac.ru. Адрес сайта организации: https://www.icp.ac.ru.

04.03.2024 г.

Подпись в.н.с., д.х.н. Г.В. Луковой удостоверяю

Ученый секретарь ФИЦ ПХФ и МХ РАН, дх н

6

/ Б.Л. Психа /