ОТЗЫВ

официального оппонента на диссертацию Постникова Павла Сергеевича «Реагенты на основе гипервалентного йода: от получения и химических свойств к плазмон-индуцируемым превращениям органических веществ», представленную на соискание ученой степени доктора химических наук по специальностям 1.4.3 — Органическая химия, 1.4.4 — Физическая химия

Диссертационная работа Постникова П.С. посвящена химии материалов на основе гипервалентного йода – обширного класса универсальных и экологически реагентов для органического синтеза, включая безопасных исследование альтернативных подходов к активации иодониевых солей с использованием плазмонного индуцирования химических превращений и дальнейшего развития химии плазмона на поверхности плазмон-активных материалов. Поскольку в современной химии и науке о материалах особое место отводится исследованию реакционной способности реагентов, способных вступать в широкий ряд превращений, и совершенствованию методов получения таких реагентов, то актуальность диссертационной работы Постникова П.С., безусловно, не вызывает сомнений. Кроме того, поверхностная химия иодониевых солей считается слабо исследованной областью химии и, в основном, подразумевает использование электрохимических подходов. Поэтому разработка альтернативных методов активации иодониевых солей представляется весьма перспективной для создания материалов с контролируемыми поверхностными свойствами. Павел Сергеевич в рамках представленной работы предложил несколько концептуально новых и высокоактивных производных гипервалентного йода, а также синтетические методики с их участием. Кроме того, были описаны новые примеры реакций, протекающие на границе раздела фаз между поверхностью плазмон-активного материала и окружающей средой (плазмон-инициируемые реакции азид-алкинного циклоприсоединения, генерирования водорода in растворителей, situ ИЗ полимеризации c обратимой передачей цепи, нитроксид-опосредованной полимеризации, конденсации нитрилов в триазины). Поэтому новизна работы очевидна.

Диссертационная работа аккуратно оформлена и тщательно выполнена. Во введении автором обосновывается актуальность работы, формулируется цель и задачи исследования. Основное содержание работы, состоит из трех частей, посвященным трем взаимопересекающимся направлениям. В первой из них Постниковым П.С. описываются реагенты на основе λ^5 - и λ^3 -иоданов, методы их синтеза и способы совершенствования традиционных синтетических подходов их получения, а также примеры применения в важнейших реакциях органической химии. Вторая часть работы посвящена исследованию реакций взаимодействия иодониевых солей с поверхностями 2D- и 1D-наноматериалов и методам ковалентной функционализации поверхности с их использованием. Третья часть работы посвящена реакциям, осуществляемым на поверхностях плазмонных материалов, их механизмам, а также применению в создании полезных устройств.

Завершают диссертационную работу заключение и выводы, а также список трудов автора. Выводы полностью отражают результаты работы и их обоснованность не вызывает сомнения.

Постниковым П.С. был получен целый ряд новых и принципиально важных результатов, к которым, прежде всего, следует отнести удобные и простые методы получения широкого ряда λ^5 - и λ^3 -иоданов, включающих новые реагенты для генерирования ариновых интермедиатов и окислители с рекордной окисляющей способностью, а также новые синтетические методики с их участием; методы модификации поверхности тонких пленок золота и других плазмон-активных материалов с использованием иодониевых и диазониевых солей для создания гидрофобных материалов; результаты исследований плазмон-инициируемых трансформаций органических функциональных групп на поверхности восстановление, азид-алкинное циклоприсоединение, гомолиз С-О связи в структуре алкоксиаминов, региоселективный гомолиз С-І связей в структуре иодониевых солей, конденсация нитрилов в триазины.

Особый интерес представляет изученный автором механизм плазмонинициируемых трансформаций, включающий внутримолекулярное возбуждение органических молекул. Были получены новые образцы сенсорных систем на основе поверхностно-модифицированных материалов для детектирования α-1гликопротеина, углекислого газа, гидроксильных радикалов и серосодержащих гетероциклов. Разработаны методы генерации бензиновых интермедиатов в мягких условиях при комнатной температуре под действием воды с использованием производных иодоксоборола.

Основные результаты работы в полной мере отражены в публикациях (37 статьях уровня Q1-Q2 (в том числе 3 обзора по теме диссертации) в рецензируемых журналах, индексируемых Scopus и WoS) и доложены на международных и всероссийских конференциях, что свидетельствует о достаточной апробации диссертационной работы. Отдельные части работы выполнялись при поддержке РНФ (17-73-20066 с продлением, 16-13-10081 с продлением), РФФИ (18-43-703016) и Мега-гранта в рамках 220ПП 075-15-2021-585 «Невалентные взаимодействия в кристаллохимическом дизайне 3D-молекулярных и 2D-поверхностных архитектур в целях создания функциональных материалов и решения задач химии устойчивого развития».

В ходе знакомства с диссертацией возникли следующие вопросы и замечания:

- 1. В работе присутствуют незначительные опечатки (стр. 42 и 43 металорганического, стр. 45 привались), а также смешение русскоязычных и англоязычных аббревиатур (ГПИ, СГИ, IBX, PIDA, DMP и т.д.). Хотелось бы также порекомендовать автору русифицировать номенклатуру (вместо iodine (V) на стр. 14 использовать йод (V); вместо method на стр. 15 метод; вместо reagent mixture на стр. 24 смесь реагентов и т.д.) и определять аббревиатуру при первом упоминании (*m*CPBA на стр. 16 и далее, DCM на стр. 14 и далее, Su-8 на стр. 37, ТЭА на стр. 41, ДХМ на стр. 45, ТОF и ТОN на стр. 50 и т.д.).
- 2. ГОСТ Р 7.0.11-2011 устанавливает требования к оформлению иллюстрированного материала диссертационных работ, в соответствии с которым «Рисунками называют все иллюстрации, включая схемы и фотографии.<...> Рисунки тоже размещаются со ссылкой, нумеруются в рамках главы или по всему тексту на выбор исполнителя». К сожалению, весь графический материал, представленный в диссертационной работе, никак не пронумерован и не озаглавлен, что сильно осложняет работу с текстом.

- 3. В работе следовало бы привести краткое описание методов измерения каталитических активности и производительности исследуемых плазмон-инициируемых реакций.
- 4. Не очень удачно представлены количественные данные о эффективности превращения эпоксидов в циклические карбонаты в присутствии разработанных катализаторов (стр. 50). Величина ТОN становится информативна, если известно общее время работы катализатора. При этом важно знать, потерял активность катализатор за это время работы или способен работать дальше. Кроме того, следовало бы сравнить представленные данные с известными из литературы результатами действия аналогичных и/или традиционных катализаторов.
- 5. Для оценки перспектив практического использования исследованных катализаторов полезны были бы данные о возможности многократного или длительного использования каталитических систем, наличие принципиальной возможности их регенерации.

Все перечисленные замечания и вопросы не влияют на общее положительное впечатление от представленной работы Постниковым Павлом Сергеевичем. Диссертация представляет собой законченную научно-исследовательскую работу, выполненную на высоком уровне с использованием современных методов исследований, а совокупность полученные результатов можно квалифицировать как крупное научное достижение в областях органической и физической химии, имеющее важное практическое значение для применения в органическом синтезе (метод получения циклических карбонатов, ковалентных органических каркасов; методы окисления перфторированных спиртов в мягких условиях с использованием дитрифлата иодоксибензойной кислоты(IBX-2OTf); методы синтеза 1,2,4-оксадиазолов и бициклическихпроизводных изоксазола с использованием реакции формального[2+3] циклоприсоединения альдоксимов), а также химии плазмонного резонанса (методы генерирования водорода из воды в мягких условиях, конденсация нитрилов в триазины).

В целом содержание диссертации соответствует профилю специальности 1.4.3 — Органическая химия, поскольку посвящена синтезу органических соединений с полезными свойствами и новыми структурами, а также разработке новых синтетических методов получения органических веществ, и профилю специальности 1.4.4 – Физическая химия, поскольку посвящена изучению природы превращения веществ на поверхности плазмон-активных материалов, исследованию их термодинамических и кинетических закономерностей, а также разработке методов управления свойствами поверхности.

Представленная диссертация полностью соответствует требованиям пунктов 9-14 «Положения о порядке присуждения ученых степеней», введенного в действие постановлением Правительства Российской Федерации от 24 сентября 2013 г. № 842, а также «Постановлению о внесении изменений в некоторые акты Правительства Российской Федерации», введенному в действие постановлением Правительства Российской Федерации от 20 марта 2021 г. № 426, предъявляемым к докторским диссертациям, защищаемым в виде научного доклада, и является научноквалификационной работой, содержащей совокупность теоретических положений, квалифицируемых как крупное научное достижение в области органической и физической химий. На основании вышеизложенного считаю, что автор диссертации Постников Павел Сергеевич достоин присуждения ученой степени доктора химических наук по специальностям 1.4.3 – Органическая химия, 1.4.4 – Физическая химия.

Официальный оппонент:

(физическая химия), Доктор химических наук функциональных лабораторией заведующий государственного Федерального наноматериалов бюджетного учреждения науки Иркутского института химии им. А.Е. Фаворского СО РАН Титова Юлия Юрьевна

Ю.Ю. Титова

Почтовый адрес:

664033, Иркутск, ул. Фаворского, д. 1

ФГБУН Иркутский институт химии им. А.Е. Фаворского СО РАН,

Тел. +7-3952-42-69-11;

E-mail: titova@irioch.irk.ru, ytitova60@gmail.com

« / У » ноября 2021 г.

Подпись Титовой Ю.Ю. удостоверяю:

Ученый секретарь ИрИХ СО РАН к.х.н. с не

Т.Н. Комарова